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1 Motivation

Ad hoc parsers are pieces of code that use common string

functions like split, trim, or slice to effectively perfom

parsing—that is, “the process of structuring a linear represen-
tation in accordance with a given grammar” [13]—without

employing any formal parsing techniques or frameworks;

the “given grammar” remains entirely implicit.

As an example, here is a Python expression that turns a

string of comma-separated numbers into a list of integers:

xs = map(int , s.split(","))

This is a typical ad hoc parser. It could be part of code han-

dling command-line arguments, reading an ad hoc file for-

mat, or processing some other kind of user input. Often, this

kind of code is deeply entangled with application logic, a

phenomenon known as shotgun parsing [17].

The following is the above parser’s input grammar, a finite

but complete formal description of all values the input string

can have without the program going wrong in some way:
1

𝑠 → 𝑖𝑛𝑡 ⋃︀ 𝑖𝑛𝑡 , 𝑠

𝑖𝑛𝑡 → 𝑠𝑝𝑎𝑐𝑒∗ (+ ⋃︀ -)? 𝑑𝑖𝑔𝑖𝑡 (_? 𝑑𝑖𝑔𝑖𝑡)∗ 𝑠𝑝𝑎𝑐𝑒∗

𝑑𝑖𝑔𝑖𝑡 → 0 ⋃︀ 1 ⋃︀ 2 ⋃︀ 3 ⋃︀ 4 ⋃︀ 5 ⋃︀ 6 ⋃︀ 7 ⋃︀ 8 ⋃︀ 9

𝑠𝑝𝑎𝑐𝑒 → ␣ ⋃︀ \t ⋃︀ \n ⋃︀ \v ⋃︀ \f ⋃︀ \r

Parts of this grammar might be surprising and not at all

obvious from looking at the code alone. Andwhile it certainly

takes some expertise to interpret a grammar correctly, it

provides benefits beyond mere documentation, e.g., allowing

one to automatically generate test inputs [1, 14], or reason

about language-theoretic security properties [20].

There is an analogy here with types. Just like types, gram-

mars are a form of specification. A parser without an ex-

plicit grammar is very much like a function without a type

signature—it might still work, but you will not have any

guarantees about it before actually running the program.

Types have one significant advantage over grammars,

however: most type systems offer a form of type inference,
allowing programmers to generally omit type annotations

because they can be automatically recovered from the sur-

rounding context. Is it possible to infer grammars just like

we can infer types?

We believe that it is, and we have previously sketched an

end-to-end grammar inference system (Figure 1) that would

1
This grammar assumes the semantics of Python 3.9.
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Figure 1. Sketch of a grammar inference system [21]

enable programmers to get input grammars from unanno-

tated ad hoc parser source code “for free.” We envision that

this kind of static grammar inference enables a whole range

of new possibilities, such as interactive documentation, bi-

directional parser synthesis, grammar-based code search,

and semantic change tracking [21].

In this extended abstract, we report our progress toward

grammar inference via refinement types and highlight the

challenges and work still ahead of us.

2 The Panini Language

Our approach for automatic grammar inference is centered

around an intermediate representation, tentatively titled

Panini,
2
a domain-specific language for parsing. It is a small

𝜆-calculus in Administrative Normal Form (ANF) [12], solely

intended for type synthesis. Panini programs are neither

meant to be executed nor written by hand. Ad hoc parser

source code, written in a general-purpose progamming lan-

guage like Python, is first transformed into static single as-

signment (SSA) form [5] and then into a Panini program

via an SSA-to-ANF transformation [7]. The only thing not

auto-generated are specifications for source library functions,

which have to be provided (once) for each source language

in the form of axiomatic type signatures (cf. Figure 2).

Panini has a refinement type system in the Liquid Types
tradition [19, 22]. Base types, like int or string, are deco-

rated with predicates in an SMT-decidable logic, namely

quantifier-free linear arithmetic with uninterpreted func-

tions (QF_UFLIA) [2] extended with a theory of operations

over strings [3]. For example, {𝜈 ∶ int ⋃︀ 𝜈 ≥ 0} is the type of
natural numbers and (𝑠 ∶ string) → {𝜈 ∶ int ⋃︀ 𝜈 ≥ 0 ∧ 𝜈 = ⋃︀𝑠 ⋃︀}

2
After the ancient Indian grammarian Pān. ini [4], as well as the delicious

Italian sandwiches.
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assert ∶ {𝑏 ∶ bool ⋃︀ 𝑏} → unit

equals ∶ (𝑎 ∶ int) → (𝑏 ∶ int) → {𝑐 ∶ bool ⋃︀ 𝑐⇔ 𝑎 = 𝑏}

length ∶ (𝑠 ∶ string) → {𝑛 ∶ int ⋃︀ 𝑛 ≥ 0 ∧ 𝑛 = ⋃︀𝑠 ⋃︀}

charAt ∶ (𝑠 ∶ string) → {𝑖 ∶ int ⋃︀ 𝑖 ≥ 0 ∧ 𝑖 < ⋃︀𝑠 ⋃︀} →

{𝑡 ∶ string ⋃︀ 𝑡 = 𝑠(︀𝑖⌋︀}

match ∶ (𝑠 ∶ string) → (𝑡 ∶ string) →

{𝑏 ∶ bool ⋃︀ 𝑏⇔ 𝑠 = 𝑡}

Figure 2. Panini specifications of standard functions

is a dependent function type whose outputs can refer to in-

put types. Subtyping, e.g., {𝜈 ∶ int ⋃︀ 𝜈 ≥ 0} ⩽ int, generates
entailment constraints, with function types decomposing

into contra-variant inputs and co-variant outputs. These

and other constraints produced in the course of type check-

ing/synthesis are known as verification conditions (VCs).

Their validity implies that the types are correct, i.e., that

the program meets its specification. VCs can be discharged

by any off-the-shelf SMT solver; we currently use Z3 [10].

The generation and discharge of VCs can be quite involved,

especially because the constraints might contain 𝜅 variables
denoting unknown refinements. These arise naturally as part

of type checking, e.g., to allow information to flow between

intermediate terms, or if the user explicitly adds a refinement
hole to a type signature. Various approaches exist to find

satisfying assignments for 𝜅 variables, and it is generally

(and in our case particularly) desirable to find the strongest

or most precise solution given the overall constraints.

The current implementation of our system is based in

large parts on the Sprite tutorial language by Jhala and

Vazou [15], but incorporating ideas from various other sys-

tems [8, 11, 18]. Notably, we use the Fusion algorithm by

Cosman and Jhala [8] to enable inference of the most pre-

cise local refinement type for all program statements, with-

out requiring any prior type annotations except for library

functions. Another advantage of the Fusion approach is the

preservation of scoping structure, yielding VCs that more

closely match the original program structurally.

As we continue working towards our goal of automatic

grammar inference, we expect to make major modifications

to our current type inference algorithm (by which we mean

the combination of typing rules, predicate simplification

procedures, and constraint solver) and are hopefully able to

push the state-of-the-art forward.

3 Grammar Inference

The problem of inferring input grammars is equivalent to the

problem of inferring precise preconditions for parsing func-

tions. In the context of refinement types, this means finding

the most precise solution for the 𝜅 variable representing the

refinement of the input string argument.

Example 3.1. The Python expression

1 assert s[0] == "a"

can be transformed to the following Panini equivalent, as-

suming 𝑠 to be the string whose grammar we wish to infer:

𝝀𝑠 .

let 𝑥 = charAt 𝑠 0 in

let 𝑝 = match 𝑥 "a" in

assert 𝑝

Given the specifications for charAt, match, and assert from
Figure 2, we can infer the whole expression to have the type

{𝑠 ∶ string ⋃︀ 𝜅0(𝑠)} → unit

under the verification condition:

∀𝑠 . 𝜅0(𝑠) ⇒

0 < ⋃︀𝑠 ⋃︀ ∧ ∀𝑥 . 𝑥 = 𝑠(︀0⌋︀ ⇒ ∀𝑝. 𝑝⇔ 𝑥 = "a"⇒ 𝑝

Now we have to find an appropriate assignment for 𝜅0. It is

clear that choosing 𝜅0(𝑠) ≐ true, i.e., allowing any string for

𝑠 , is not a valid solution because it does not satisfy the con-

straint. On the other hand, choosing 𝜅0(𝑠) ≐ false trivially
validates the constraint, but it implies that the function could

never be called, as no string satisfies the predicate false. One
possible assignment would be

𝜅0(𝑠) ≐ 𝑠 = "a",

i.e., only allowing exactly the string "a" as a value for 𝑠 .

While this satisifes the constraint and produces a correct

type in the sense that it ensures the program will never go

wrong, it is much too strict: we are disallowing an infinite

number of other strings that would just as well fullfil these

criteria.

The correct assignment for 𝜅0 is

𝜅0(𝑠) ≐ 𝑠(︀0⌋︀ = "a",

which ensures that the first character of the string is “a”

and leaves the rest of the string unconstrained. Translated

into a grammar, this could be written as 𝑠 → aΣ∗, where Σ
is any letter from the alphabet. Note that the solution is a

minimized version of the consequent in the VC.

Example 3.2. Let’s look at another simple parser:

1 if s[0] == "a":
2 assert len(s) == 1
3 else:
4 assert s[1] == "b"

Figure 3 shows the equivalent Panini program, alongside

the VC for the top-level function type. It also shows how

we can derive a precise assignment for 𝜅0 by walking the

VC’s top-level consequent, using our domain knowledge of

parsing and string operations to minimize predicates.
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𝝀𝑠 . ∀𝑠 . 𝜅0(𝑠) ⇒

let 𝑥 = charAt 𝑠 0 in 0 < ⋃︀𝑠 ⋃︀ ∧ ∀𝑥 . 𝑥 = 𝑠(︀0⌋︀ ⇒ 𝑠(︀0⌋︀ = 𝑥

let 𝑝1 = match 𝑥 "a" in ∀𝑝1 . 𝑝1⇔ 𝑥 = "a"⇒ (𝑝1 ∧ 𝑠(︀0⌋︀ = "a") ∨ (¬𝑝1 ∧ 𝑠(︀0⌋︀ ≠ "a")

if 𝑝1 then (𝑝1 ⇒ 𝑠(︀0⌋︀ = "a"
let 𝑛 = length 𝑠 in ∀𝑛. 𝑛 ≥ 0 ∧ 𝑛 = ⋃︀𝑠 ⋃︀ ⇒ 𝑠(︀0⌋︀ = "a" ∧ ⋃︀𝑠 ⋃︀ = 𝑛
let 𝑝2 = equals 𝑛 1 in ∀𝑝2. 𝑝2⇔ 𝑛 = 1⇒ (𝑝2 ∧ 𝑠 = "a") ∨ . . .

assert 𝑝2 𝑝2) 𝑠 = "a"

else ∧ (¬𝑝1 ⇒ 𝑠(︀0⌋︀ ≠ "a"
let 𝑦 = charAt 𝑠 1 in 1 < ⋃︀𝑠 ⋃︀ ∧ ∀𝑦. 𝑦 = 𝑠(︀1⌋︀ ⇒ 𝑠(︀0⌋︀ ≠ "a" ∧ 𝑠(︀1⌋︀ = 𝑦
let 𝑝3 = match 𝑦 "b" in ∀𝑝3. 𝑝3⇔ 𝑦 = "b"⇒ 𝑠(︀0⌋︀ ≠ "a" ∧ ((𝑝3 ∧ 𝑠(︀1⌋︀ = "b") ∨ . . . )

assert 𝑝3 𝑝3) 𝑠(︀0⌋︀ ≠ "a" ∧ 𝑠(︀1⌋︀ = "b"

(𝑠 = "a") ∨ (𝑠(︀0⌋︀ ≠ "a" ∧ 𝑠(︀1⌋︀ = "b")

Figure 3. The Panini code for Example 3.2 (left), its verification condition (middle), and a derivation of 𝜅0 (right)

For example, the constraint 0 < ⋃︀𝑠 ⋃︀ ∧ ∀𝑥 . 𝑥 = 𝑠(︀0⌋︀ ⇒ . . .

tells us that 𝑠 is a string of at least one character and that we

can identify this character by the variable 𝑥 . The string might

have more characters, but we know definitely that it has at

least this one. So we can make a preliminary assignment

𝜅0 ≅ 𝑠(︀0⌋︀ = 𝑥 . We then continue descending into quantifiers

and implications, resolving names and simplifying equations,

constructing 𝜅0 piece by piece. Constraints of the form

∀𝑝1. 𝑝1⇔ 𝑥 = "a"⇒ . . .

make us branch into two possible worlds: one where the

predicate is true and one where its opposite is true. Accord-

ingly, we update our preliminary assignment to

𝜅0 ≅ (𝑝1 ∧ 𝑠(︀0⌋︀ = "a") ∨ (¬𝑝1 ∧ 𝑠(︀0⌋︀ ≠ "a").

Subsequent constraints may now allow us to further refine

and expand each of these branches, or to eliminate some of

them altogether if they can never be satisfiable.

Finally, we arrive at the correct assignment

𝜅0(𝑠) ≐ (𝑠 = "a") ∨ (𝑠(︀0⌋︀ ≠ "a" ∧ 𝑠(︀1⌋︀ = "b"),

which can be equivalently written in grammar form as

𝑠 → a ⋃︀ (Σ/a)bΣ∗ .

4 Challenges and Future Work

● Computing precise solutions for input strings.

Our goal is a constraint solving algorithm that can de-

rive provably exact descriptions of input strings, up to

some (to be determined) language complexity. Experience

has shown that the structure of ad hoc parsers closely

mirrors the structure of the languages they parse and

that humans tend to write small parsers in a top-down,

recursive-descent, 𝐿𝐿(1) style. We aim to efficiently find

and minimize string predicates by exploiting this common

structure and other recurring ad hoc parser patterns.

● Constructing grammars from predicates.

For downstream use, we need to transform the logical

predicates describing string preconditions into a represen-

tation that allows us to derive grammars in familiar forms

(e.g., ABNF [9] or railroad diagrams [6]) and to compare

grammars with each other [16]. We are currently explor-

ing a graph representation with bounded edge constraints.

● Extracting relevant parts of the initial source code.

During transformation from general-purpose source lan-

guage to Panini program, we want to extract only the

information flows that are related to parsing the input

string. Initial explorations have shown a form of program

slicing [23] to be applicable here.

● Ensuring source function specifications are correct.

We need precise specifications of all string functions and

other externally defined operations used in Panini pro-

grams (cf. Figure 2). While these need to be provided only

once per source language/library version, this kind of

specification engineering can be cumbersome, and care

must be taken to ensure that the axioms accurately reflect

reality. We are exploring ways to mechanize this process.

● Preserving precise source location information.

For practical applications, it will be necessary to accurately

trace grammar productions back to their origins in the

initial source code. As there are quite a number of steps

between source and final grammar, including SMT solving,

this is far from trivial. We need to ensure that identifier

provenance is preserved throughout the whole process.

● How expressive does Panini need to be?

Our language implementation is currently lacking fea-

tures like type polymorphism and recursive data types.

To what extent these and other language features are ac-

tually required mainly depends on the desired scope of

our inference, i.e., what constructs are actually needed to

represent real-world ad hoc parsers. We are conducting a

study to determine this empirically.
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